Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Memb Sci ; 672: 121257, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2165705

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic makes protective respirators highly demanded. The respirator materials should filter out viral fine aerosols effectively, allow airflow to pass through easily, and wick away the exhalant moisture timely. However, the commonly used melt-blown nonwovens perform poorly in meeting these requirements simultaneously. Herein, dual-bionic nano-groove structured (NGS) nanofibers are fabricated to serve as protective, breathable and moisture-wicking respirator materials. The creativity of this design is that the tailoring of dual-bionic nano-groove structure, combined with the strong polarity and hydrophilicity of electrospinning polymer, not only endows the nanofibrous materials with improved particle capture ability but also enable them to wick away and transmit breathing moisture. Benefitting from the synthetic effect of hierarchical structure and the intrinsic property of polymers, the resulting NGS nanofibrous membranes show a high filtration efficiency of 99.96%, a low pressure drop of 110 Pa, and a high moisture transmission rate of 5.67 kg m-2 d-1 at the same time. More importantly, the sharp increase of breathing resistance caused by the condensation of exhaled moisture is avoided, overcoming the bottleneck faced by traditional nonwovens and paving a new way for developing protective respirators with high wear comfortability.

2.
Int Wound J ; 19(6): 1289-1297, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1532811

RESUMEN

This study aimed to explore the clinical characteristic and outcomes of inpatients with diabetic foot ulceration (DFU) in 2019 (prelockdown) and 2020 (postlockdown) due to the COVID-19 pandemic, at an emergency medical service unit. Prediction models for mortality and amputation were developed to describe the risk factors using a machine learning-based approach. Hospitalized DFU patients (N = 23) were recruited after the lockdown in 2020 and matched with corresponding inpatients (N = 23) before lockdown in 2019. Six widely used machine learning models were built and internally validated using 3-fold cross-validation to predict the risk of amputation and death in DFU inpatients under the COVID-19 pandemic. Previous DF ulcers, prehospital delay, and mortality were significantly higher in 2020 compared to 2019. Diabetic foot patients in 2020 had higher hs-CRP levels (P = .037) but lower hemoglobin levels (P = .017). The extreme gradient boosting (XGBoost) performed best in all models for predicting amputation and mortality with the highest area under the curve (0.86 and 0.94), accuracy (0.80 and 0.90), sensitivity (0.67 and 1.00), and negative predictive value (0.86 and 1.00). A long delay in admission and a higher risk of mortality was observed in patients with DFU who attended the emergency center during the COVID-19 post lockdown. The XGBoost model can provide evidence-based risk information for patients with DFU regarding their amputation and mortality. The prediction models would benefit DFU patients during the COVID-19 pandemic.


Asunto(s)
COVID-19 , Diabetes Mellitus , Pie Diabético , Úlcera del Pie , Amputación Quirúrgica , Proteína C-Reactiva , Control de Enfermedades Transmisibles , Pie Diabético/epidemiología , Hemoglobinas , Humanos , Pacientes Internos , Aprendizaje Automático , Pandemias , Úlcera
3.
Chem Eng J ; 398: 125626, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: covidwho-361282

RESUMEN

A one-step and controllable strategy to prepare all-polymer hybrid electret fibers is reported based on the coupling of polystyrene and polyvinylidene fluoride in electric response. The complementary dielectric properties between PS and PVDF generate dual-system electret charges within PS/PVDF fibers, thereby improving the electret effect. The bi-component all-polymer electret fibers show enhanced electret property and structural continuity, contributing to a N95 protective respirator with high filtration efficiency (99.752%), low air resistance (72 Pa) and long service life. The fabrication of all-polymer electret fibers solves the challenge of nanoparticle toxicity for existing polymer/nanoparticle electret fibers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA